>

基于盒式图的数据过滤与回归分析算法

- 编辑:网赌十大信誉的平台 -

基于盒式图的数据过滤与回归分析算法

  定义、收集以及分析的持续性定量化过程,目的在于对此加以理解、预测、评估、控制和改善,从而保证软件开发中的高效率、低成本、高质量[1]。但是,得到正确的度量只是测量程序的一部分。软件质量是与所收集和分析的

  清洗过程的目的就是要解决“脏数据”的问题。数据清洗是指去除或修补源数据中的不完整、不一致、含噪声的数据。在源数据中,可能由于疏忽、懒惰,甚至为了保密使系统设计人员无法得到某些数据项的数据[2]。根据决策系统中“garbage in garbage out”(如果输入的分析数据是垃圾则输出的分析结果也将是垃圾)原理,必须处理这些噪声数据。去掉噪声平滑数据的技术主要有分箱(binning)、聚类(clustering)、回归(regression)等[3]。本文在

  的基础上,加入了盒形图进行数据过滤,从而得出一条线性回归直线,使模式或者关系变得更加明显,从而用这些模式和关系对测量的属性作出判断。

  该方法可以描述数据集取值范围的情况,展示数据主要聚集的区域,发现离群数据可能的位置,以便于对离群数据进行处理。盒形图显示一个变量的信息,如对相同CMM等级的不同项目完成每个FP的工作量分析,根据中位数m、上四分位数u、下四分位数l、盒长d、和尾(tail)来分析。

  中位数是在数据集中排列居中的项。也就是说,如果中位数取值为m,则数据集中有一半的值大于m,一半的值小于m。将所有数值按大小顺序排列并分成四等份,处于三个分割点位置的得分就是四分位数。最小的四分位数称为下四分位数l,所有数值中,有四分之一小于下四分位数,四分之三大于下四分位数。中点位置的四分位数就是中位数。最大的四分位数称为上四分位数u,所有数值中,有四分之三小于上四分位数,四分之一大于上四分位数。也有叫第25百分位数、第75百分位数的。将上四分位数和下四分位数的距离定义为盒长d,因此,d=u-l。接下来定义分布的尾(tail)。理论上,上尾值点为u+1.5d,下尾值为u-1.5d,这些值必须进行舍位处理,以接近真实数据,位于上尾和下尾之外的值称为离群值。

  回归分析方法是研究要素之间具体数量关系的强有力的工具,运用这种方法能够建立反映要素之间具体的数量关系的数学模型,即回归模型。线性回归技术的基础就是散点图。将每个属性对表示为一个数据点(x,y),然后用回归技术计算出能够最好地拟合这些点的直线。目标是将属性y(因变量)根据属性x(自变量)表示为等式:y=a+bx。

  线性回归的理论是从每个点垂直向上或向下画一条线段到趋势直线,表示从数据点到趋势直线的垂直距离。在某种意义上,这些线段的长度表示数据和直线的差异,且这种差异应尽可能地小。因此,“最佳拟合”的直线式是指使该距离最小的直线。

  在数学上要计算“最佳拟合”直线的斜率b和截距a是很简单的。每个点的差异称为残差,生成线性回归直线的公式是残差的平方和达到最小。可以将每个数据点的残差表示为:

  在进行数据清洗时,由于数据是无序输入的,所以先对其排序,再用盒形图法行数据清洗。以下是伪代码:

本文由社会科学发布,转载请注明来源:基于盒式图的数据过滤与回归分析算法